Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Opt Express ; 32(3): 3480-3491, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297568

RESUMO

Structured illumination is essential for high-performance ptychography. Especially in the extreme ultraviolet (EUV) range, where reflective optics are prevalent, the generation of structured beams is challenging and, so far, mostly amplitude-only masks have been used. In this study, we generate a highly structured beam using a phase-shifting diffuser optimized for 13.5 nm wavelength and apply this beam to EUV ptychography. This tailored illumination significantly enhances the quality and resolution of the ptychography reconstructions. In particular, when utilizing the full dynamics range of the detector, the resolution has been improved from 125 nm, when using an unstructured beam, to 34 nm. Further, ptychography enables the quantitative measurement of both the amplitude and phase of the EUV diffuser at 13.5 nm wavelength. This capability allows us to evaluate the influence of imperfections and contaminations on its "at wavelength" performance, paving the way for advanced EUV metrology applications and highlighting its importance for future developments in nanolithography and related fields.

2.
ACS Nano ; 18(6): 5079-5088, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38290218

RESUMO

For the realization of truly reconfigurable metasurface technologies, dynamic spatial tuning of the metasurface resonance is required. Here we report the use of organic photoswitches as a means for the light-induced spatial tuning of metasurface resonances. Coating of a dielectric metasurface, hosting high-quality-factor resonances, with a spiropyran (SPA)-containing polymer enabled dynamic resonance tuning up to 4 times the resonance full-width at half-maximum with arbitrary spatial precision. A major benefit of employing photoswitches is the broad toolbox of chromophores available and the unique optical properties of each. In particular, SPA and azobenzene (AZO) photoswitches can both be switched with UV light but exhibit opposite refractive index changes. When applied to the metasurface, SPA induced a red shift in the metasurface resonance with a figure of merit of 97 RIU-1, while AZO caused a blue shift in the resonance with an even greater sensitivity of 100 RIU-1. Critically, SPA and AZO can be individually recovered with red and blue light, respectively. To exploit this advantage, we coated a dielectric metasurface with spatially offset SPA- and AZO-containing polymers to demonstrate wavelength-dependent, spatially resolved control over the metasurface resonance tuning.

3.
Nanoscale ; 14(41): 15475-15483, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36226758

RESUMO

The grazing emission X-ray fluorescence (GEXRF) technique offers a promising approach to determining the spatial distribution of various chemical elements in nanostructures. In this paper, we present a comparison with grazing incidence small-angle X-ray scattering (GISAXS), an established method for dimensional nanometrology, on periodic TiO2 nanostructures fabricated by a self-aligned double patterning (SADP) process. We further test the potential of GEXRF for process control in the presence of residual chromium on the structures. The angle-resolved fluorescence emission as well as the scattered radiation from the surface are collected with photon-counting hybrid pixel area detectors using scanning-free detection schemes. By modelling the X-ray standing wave (XSW) field in the vicinity of and inside the nanostructure, it is possible to obtain both the angle-resolved fluorescence intensities and the far-field scattering intensities from the same model. The comparison also illustrates that for ensemble photon-based measurement methods, accounting for roughness effects and imperfections can be essential when modelling advanced nanostructured surfaces.

4.
Small ; 18(6): e2105776, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34821030

RESUMO

The spatial and compositional complexity of 3D structures employed in today's nanotechnologies has developed to a level at which the requirements for process development and control can no longer fully be met by existing metrology techniques. For instance, buried parts in stratified nanostructures, which are often crucial for device functionality, can only be probed in a destructive manner in few locations as many existing nondestructive techniques only probe the objects surfaces. Here, it is demonstrated that grazing exit X-ray fluorescence can simultaneously characterize an ensemble of regularly ordered nanostructures simultaneously with respect to their dimensional properties and their elemental composition. This technique is nondestructive and compatible to typically sized test fields, allowing the same array of structures to be studied by other techniques. For crucial parameters, the technique provides sub-nm discrimination capabilities and it does not require access-limited large-scale research facilities as it is compatible to laboratory-scale instrumentation.


Assuntos
Nanoestruturas , Nanoestruturas/química , Nanotecnologia
5.
Opt Express ; 28(16): 23122-23132, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752313

RESUMO

We demonstrate the retrieval of deep subwavelength structural information in nano-optical polarizers by scatterometry of quasi-bound states in the continuum (quasi-BICs). To this end, we investigate titanium dioxide wire grid polarizers for application wavelengths in the deep ultraviolet (DUV) spectral range fabricated with a self-aligned double-patterning process. In contrast to the time-consuming and elaborate measurement techniques like scanning electron microscopy, asymmetry induced quasi-BICs occurring in the near ultraviolet and visible spectral range provide an easily accessible and efficient probe mechanism. Thereby, dimensional parameters are retrieved with uncertainties in the sub-nanometer range. Our results show that BICs are a promising tool for process control in optics and semiconductor technology.

6.
Opt Express ; 28(14): 20106-20116, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680078

RESUMO

We investigate a reconfigurable dielectric metasurface merging optomechanical interaction and quasi-bound states in the continuum promising for all-optical light control light. The surface consists of a dimerized high-contrast grating with a compliant bilayer structure. The optical forces induced by a control light field lead to structural deformations changing the optical response. We discuss requirements for the geometry and optical force distribution to enable an efficient optomechanical coupling, which can be exploited to tune reflectivity, phase and polarization of a beam impinging on the metasurface. Numerical results explore some tunable devices as mirrors, saturable output couplers, phase modulators and retarder plates.

7.
Opt Lett ; 44(12): 3014-3017, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199369

RESUMO

A gold-coated silicon grating has been developed, enabling efficient spatial separation of broadband mid-infrared (MIR) beams with wavelengths >5 µm from collinearly propagating, broadband, high-power light in the near-infrared (NIR) spectral range (centered at 2 µm). The optic provides spectral filtering at high powers in a thermally robust and chromatic-dispersion-free manner such as that necessary for coherent MIR radiation sources based on parametric frequency downconversion of femtosecond NIR lasers. The suppression of a >20 W average-power, 2 µm driving pulse train by three orders of magnitude, while retaining high reflectivity of the broadband MIR beam, is presented.

8.
Opt Express ; 26(15): 19534-19547, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30114124

RESUMO

High-performance nano-optical elements for application wavelengths in the ultraviolet spectral range often require feature sizes of only a few tens of nanometers where line edge roughness (LER) becomes a critical parameter for the optical performance. In this contribution, we explore the influence of LER on the optical performance of wire grid polarizers (WGP) in the far ultraviolet range. Therefore, we present a method, which uses the finite difference time domain method in combination with a comprehensive spatial frequency dependent LER model. The measured LER of 3.6 nm (standard deviation) reduces the WGP's extinction ratio by a factor of 3.6 at a wavelength of 248 nm. We identify a critical range of the correlation length, which maximizes the detrimental effect of LER. The presented method and the results provide the basis for future fabrication technology optimization of WGPs and other optical meta-surfaces in the ultraviolet spectral region or at even shorter wavelengths.

9.
Opt Lett ; 42(19): 3816-3819, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957136

RESUMO

We report the fabrication of periodic structures with a critical dimension of 90 nm on a fused silica substrate by i-line (λ=365 nm) proximity mask-aligner lithography. This realization results from the combination of the improvements of the optical system in the mask aligner (known as MO exposure optics), short-period phase-mask optimization, and the implementation of self-aligned double patterning (SADP). A 350 nm period grating is transferred into a sacrificial polymer layer and coated with an aluminum layer. The removal of the metal initially present on the horizontal surfaces and on top of the polymer grating leaves a 175 nm period grating on the wafer, which can be used as a wire grid polarizer. A computation of the efficiency is performed from the measured profile and confirms the deep-blue visible to infra-red operation range.

10.
Opt Express ; 23(13): 16628-37, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191675

RESUMO

Diffractive mask-aligner lithography allows printing structures that have a sub-micrometer resolution by using non-contact mode. For such a purpose, masks are often designed to operate with monochromatic linearly polarized light, which is obtained by placing a spectral filter and a polarizer in the beam path. We propose here a mask design that includes a wire-grid polarizer (WGP) on the top side of a photo-mask and a diffractive element on the bottom one to print a 350 nm period grating by using a classical mask-aligner in proximity exposure mode. Linearly polarizing locally an unpolarized incident beam is only possible by using a WGP on the top side of the mask. This configuration opens the possibility to use different linear polarization orientation on a single mask and allows to print high resolution structures with different orientation within one exposure.

11.
Opt Lett ; 39(22): 6434-7, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25490487

RESUMO

Substantial discrepancies are commonly observed when comparing the predicted and measured optical performance of deep-ultraviolet tungsten wire grid polarizers. Particularly, the extinction ratio is strongly impaired. Therefore, we investigate major differences between assumed and actual achieved properties regarding geometry and material of the grating structure as the origin of theses discrepancies. We find an improvement potential for the extinction ratio of one order of magnitude by improving the material and a factor of four by improving the geometry. Our results allow for a purposeful revision of fabrication processes and will therefore significantly contribute to the improvement of deep-ultraviolet wire grid polarizers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...